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Principle of Solid State Fuel Cells

DOE report (2001)
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Current DifficultiesCurrent Difficulties

• High operating temperature:
- 800 oC to 1000 oC

• Low efficiency & low current (power) density

• Difficult in packaging

• High cost for practical market applications; 

• Low lifetime

Overall, the operating temperature is too high!



Goal of This ResearchGoal of This Research

• To study the new highly ionic conductive oxides: 
Electrodes and electrolytes:

- Electrical Conductivity Relaxation 
- Isotope Exchange and Depth Profiling
- Impedance Spectroscopy

• To characterize the performance of the half 
cells and full cells;

• To develop intermediate temperature solid state 
fuel cells based on new oxide materials.  



OutlineOutline
•New oxide materials:

- Electrodes and electrolytes

•New technology (existing tech in semiconductor):

- Thin film structural fuel cells; 

•Lower operating temperature

(550 oC – 725oC)

Improving operating efficiency and device 
lifetime, enhancing the power density, and 
reducing the cost.



Perovskite Structure Oxides ABOPerovskite Structure Oxides ABO33--x x 

- actual stoichiometry depends on T and pO2



Oxygen Transport Membrane DevicesOxygen Transport Membrane Devices

single phase or dual phase
mixed conductors

ionic conductor + external circuit

fuel cells, 
electrocatalytic reactors membrane reactors
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Schematic Porous Oxygen ElectrodeSchematic Porous Oxygen Electrode
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Advantages in Advantages in nnew ew thin film oxide structuresthin film oxide structures

• much simpler than porous structures – isolate 
aspects of the kinetics  

• PrBaCo2O5+δ has high ionic and electronic 
conductivity

• new multilayered Gd:CeO2/YSZ has high ionic 
conductivity and low electronic conduction.

• for films <5000 Å bulk diffusion very fast 
• gas - solid and solid – solid interfaces 

dominate
• direct application in membrane devices for 

oxygen separation (thick dense films)



Thin film deposition techniqueThin film deposition technique
• Pulsed Laser Deposition (PLD) was employed to 

fabricate various oxide thin films and multilayered 
structures with controllable microstructures. 

• KrF excimer laser with pulse frequency of 5 Hz. 
• Deposition times of 60 min gave 300 nm thick 

films  



Characterization Technique:Characterization Technique:
Surface reaction rates & interface resistancesSurface reaction rates & interface resistances

• equilibrium   
– isotope exchange 

— *O2 ⇔ O2

• close to equilibrium    
– ac impedance 
– response to a small ac change on 

a dc bias

• non-equilibrium
– conductivity relaxation

— dc response to an abrupt change 
in pO2

*O2

O2

O2  (p1⇒p2)

V



Electrical Conductivity RelaxationElectrical Conductivity Relaxation
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1818O profile on LaO profile on La0.50.5SrSr0.50.5CoOCoO33--xx on YSZon YSZ

film exposed at 300 °C 
to 20% 18O2 for 30 min.

analyzed by SIMS

Heavy solid lines are simulated fit of the 18O profile with the parameters: 

kfg =  7.6 x 10-10 cm s-1 ; Df = 3.0 x 10-11 cm2 s-1; 

kfb = 7.5 x 10-9    cm s-1 ; Db = 1.6 x 10-12  cm2 s-1.

18O mole fraction

scaled signal for Sr

18O profile in YSZ

Film A

J. Electrochemical Society, 147 (2000) 4001  



ac impedance of thin filmsac impedance of thin films

electrolyte   solid/solid   gas/solid
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Electrical Conductivity RelaxationElectrical Conductivity Relaxation
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PBCO as New Cathode Materials

a = 3.90841 Å
b = 3.90521 Å
c = 7.63431 Å

The structure of PrBaCo2O5+x: oxygen, barium, cobalt, and praseodymium 
atoms are shown as partially shaded, shaded, filled, and gray circles,  
respectively. The partially occupied oxygen atom sites are shown as cross-
hatched circles.

Appl. Phys. Lett., 88 (2006) 024103 



Microstructure and Epitaxial Nature of PBCO
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Physical Properties of PBCO Thin Films on STO

Appl. Phys. Lett., 88 (2006) 024103
Appl. Phys. Lett., 90 (2007) 212111



Comparison of Lattice Parameters  
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Strain effects on PBCO growth
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Strain Effect in PBCO Thin Films
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Summary of Cathode ElectrodesSummary of Cathode Electrodes

• PBCO Oxide thin films provide new important 
information about gas - solid and solid – solid 
interfaces for new cathode application

• Strong strain effect has been observed in the PBCO 
system
– depend on annealing conditions and dc bias
– evidence for multiple paths

• In the future, more detailed relations with 
microstructure, surface structure and composition 
need to be developed



Properties of Oxide Electrolyte

1: δ-Bi2O3; 2: Ce1.8Gd0.2O1.9; 3: (ZrO2)0.9(Y2O3)0.1; 4: (CaO)0.13(ZrO2)0.87; 5: (ThO2)0.93(Y2O3)0.07; 
6: (CaO)0.12(HfO2)0.87; 7: Zr0.85Ca0.15O1.85; 8: CaF2; 9: BaF2; 10: SrCl2; 11: Ce0.6Y0.4O1.8; 
12: Ce0.8Y0.2O1.9; 13: Ce0.9Y0.1O1.95; 14: CeO2; 15: Zr0.85Ca0.15O1.85; 16: UO2; 17: PuO2; 18: UO2; 
19: ThO2; 20: ThO2; 21: UO2-x; 22: PuO2-x; 23: UO2+x; 24: CeO2; 25: CeO1.92

Inaba & Tagawa, SSI (1996)



Multilayered thin film electrolytesMultilayered thin film electrolytes
Oxide Conductors

Fluorites  (M,Zr)O2-x, M=Ca,Y,Sc and (M,Ce)O2-x, M=Sm,Gd
Perovskites (La,Sr)(Mg,Ga)O3-x



Thin film electrolytes  Thin film electrolytes  

• GCO is candidate electrolyte for intermediate 
temperature (450 oC - 650 oC) SOFCs

• The GCO oxygen-ion conductivity is greater than YSZ:
– Gd0.2Ce0.9O1.9:  σ = 35 mS cm-1 at 600 oC, YSZ : σ < 5 mS cm-1

• Thin films reduce ohmic resistance in the electrolyte 

• Integrate thin film fuel cells with MEMS
– (e.g. Jankowski et al. US Pat. Appl. 2003/0039874 AI 2003)



GCO is good solid electrolyte at intermediate temperature 
500oC-700oC

The oxygen-ion conductivity is better than YSZ (such as 
Ce0.8Gd0.2O1.9 is 35 mS cm-1 at 600oC, YSZ is less than 5 mS cm-1)

Highly Ionic Conductive Gd:CeO2

H. Inaba, H. Tagawa, Solid State Ionics 83 (1996) 1-16

B.C.H. Steele, Solid State Ionics 129 (2000) 95-110

H.U. Anderson, Solid State Ionics 151(2002) 111-121
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Electrical conductivity of GCO/MgO
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Oxygen partial pressure 
dependence of σ for GCO/LAO
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GCO/MgO IS at T=710oC
GCO/MgO conductivity oxygen 
partial pressure dependence

-1 0 1 2 3 4 5 6 7 8
1

0

-1

-2

-3

-4

-5

-6

-7

-8
 in N2
 in 1% O2
 in 100% O2

freqency f sweep 0.01 Hz-10 MHz

Im
 (Z

) (
x 

10
6 ) Ω

Re (Z) (x 106) Ω
10-21 10-18 10-15 10-12 10-9 10-6 10-3 100

0.01

0.1

T=818oC

T=764oC

T=710oC

T=655oC

σ 
(s

/c
m

)

pO2 (atm)

Impedance Spectrum of GCO on MgO

Solid State Ionics, 175 (2004) 103



YSZ on YSZ on MgOMgO
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Enhanced Ionic Conductivity in Nanoscale 
YSZ Films

Igor Kosacki,* Christopher M. Rouleau,† Paul F. 
Becher,*James Bentley,* and Douglas H. Lowndes,†
*Metals and Ceramics Division, 
†Condensed Matter Sciences Division
Oak Ridge National Laboratory
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Approach for new electrolyte structuresApproach for new electrolyte structures
• Prepare GCO/YSZ multilayered thin films with various 

combinations.

• Investigate the effects of different combination effects on the 
ionic conductivity

• Optimize the combination conditions and determine the ionic 
and electronic conductivity in the structures. 

Different substrates ⇒ microstructure ⇒ electrical conductivity



X-ray diffraction of GCO/YSZ Multilayers
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TEM study of multilayered films 
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Impedance study of multilayered films 
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sample GCO:YSZ stack# test 
envirovemt activation energy (eV) conductivity at 600 C(Scm)

1018 10:1 12 O2 0.986191524 0.005374982

Air 1.027593086 0.005949191

N2 1.063014058 0.004960246

1022 15:1 4 O2 0.97254059 0.013183358

Air 1.091869326 0.009446604

N2 1.011961567 0.008526298

1023 15:1 6 O2 1.013997384 0.009039061

Air 1.092743545 0.005761255

N2 1.169550545 0.004475219

1024 a 15:1 12 O2 0.853716709 0.017528976

Air 0.94359557 0.015045144

N2 0.90199897 0.013931539

Summary of multilayered structures
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Summary: ElectrolytesSummary: Electrolytes
• Multilayered GCO/YSZ thin film structures 

have been successfully fabricated and 
characterized.

• Textured GCO/YSZ thin film structures have 
excellent intermediate temperature (600-700 
oC) ionic transport properties with low 
electronic conductivity.

• The temperature dependence of the electrical 
conductivity gives an activation energy of 0.85 
eV for the optimized GCO/YSZ structures.



Anode Materials

• Ni and Zr composites
• Pd and Ru particles
• Ba(Y,Ce)O3



YBCO Results
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Recent Publications
• C. L. Chen, J. Liu, G. Collins, “2008.024.UTSA: Multilayered YSZ/GCO 

structure for intermediate temperature fuel cell applications, patent 
disclosure.

• Z. Yuan, J. Liu, C. L. Chen, C. H. Wang, X. G. Luo, X. H. Chen, G. T. Kim, D. 
X. Huang, S. S. Wang, A. J. Jacobson, and W. Donner, “Epitaxial Behavior 
and Transport Properties of PrBaCo2O5 Thin Films on (001) SrTiO3”, Appl. 
Phys. Lett., 90 (2007) 212111. 

• J. Liu, G. Collins, C. L. Chen, J. C. Jiang, E. I. Meletis, “Ionic Transport 
Properties in Multilayered GCO/YSZ structures”, submitted to Solid State 
Ionics.

• J. Liu, G. Collins, C. L. Chen, J. C. Jiang, E. I. Meletis, and A, J, Jacobson: 
“Strain Effects in Transport Properties of PrBaCo2O5 Thin Films”, submitted to 
Appl. Phys. Lett.

• C. L. Chen (invited talk), “Remarkable new class of ionic conductive oxide thin 
films for intermediate temperature fuel cells”, the 2008 International Materials 
Research Conference, Chongqing, P. R. China, June 9-12, 2008.

• C. L. Chen (invited talk), “Remarkable new class of ionic conductive oxide thin 
films for intermediate temperature fuel cells”, the Summer School Workshop 
on Advanced Materials, Shenyang, P. R. China, July 7-9, 2008.

• C. L. Chen (invited talk), “Remarkable new class of ionic conductive oxide thin 
films for intermediate temperature fuel cells”, the 08 Materials Sciences and 
Technology, Pittsburgh, Pennsylvania, Oct. 5-9, 2008.



Future Works
• Continue on the fabrication and characterizations of mixed conductive 

PBCO thin films with various multilayered ionic conductive GCO/YSZ half-
cell structure combinations

• Understand the interface behavior and ionic transport dynamics of oxygen 
in the PBCO-GCO/YSZ multilayered structures.

• Model the YSZ layer in the multilayered structures for blocking the 
electronic conduction

• Enhance the quality of the electrolyte materials and to lower the operation 
temperature from 800 oC to 600 oC. 

• Optimize the half–cell structures from PBCO/YSZ and PBCO/GCO to 
determine the best interface structures for the cathode/electrolyte interface. 

• Fabricate and characterize the advanced proton conductive YxBaCe1-xO3 
(YBCO) for anode use; systematically study the physical properties and 
ionic transport behavior of each material (YBCO, PBCO, and multilayered 
GCO/YSZ structures). 

• Fabricate various crystal structures and different crystal grain sizes, and will 
comprehensively analyze the physical properties and interface phenomena 
of each material and the effects from interface, size, and strain.

• Final goal to demonstrate the thin film multilayered structures for 
intermediate temperature SSFC.



Thank you very much!
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